easYgen-3000 Series
Genset Control

Operation

Software Version: 1.15xx
Part Numbers: 8440-1922 / 8440-1923 / 8440-1924 / 8440-1925
8440-1930 / 8440-1931 / 8440-1932 / 8440-1933
WARNING
Read this entire manual and all other publications pertaining to the work to be performed before installing, operating, or servicing this equipment. Practice all plant and safety instructions and precautions. Failure to follow instructions can cause personal injury and/or property damage.

The engine, turbine, or other type of prime mover should be equipped with an overspeed (overtemperature, or overpressure, where applicable) shutdown device(s), that operates totally independently of the prime mover control device(s) to protect against runaway or damage to the engine, turbine, or other type of prime mover with possible personal injury or loss of life should the mechanical-hydraulic governor(s) or electric control(s), the actuator(s), fuel control(s), the driving mechanism(s), the linkage(s), or the controlled device(s) fail.

Any unauthorized modifications to or use of this equipment outside its specified mechanical, electrical, or other operating limits may cause personal injury and/or property damage, including damage to the equipment. Any such unauthorized modifications: (i) constitute "misuse" and/or "negligence" within the meaning of the product warranty thereby excluding warranty coverage for any resulting damage, and (ii) invalidate product certifications or listings.

CAUTION
To prevent damage to a control system that uses an alternator or battery-charging device, make sure the charging device is turned off before disconnecting the battery from the system.

Electronic controls contain static-sensitive parts. Observe the following precautions to prevent damage to these parts.

- Discharge body static before handling the control (with power to the control turned off, contact a grounded surface and maintain contact while handling the control).
- Avoid all plastic, vinyl, and Styrofoam (except antistatic versions) around printed circuit boards.
- Do not touch the components or conductors on a printed circuit board with your hands or with conductive devices.

OUT-OF-DATE PUBLICATION
This publication may have been revised or updated since this copy was produced. To verify that you have the latest revision, be sure to check the Woodward website:

The revision level is shown at the bottom of the front cover after the publication number. The latest version of most publications is available at:
http://www.woodward.com/publications

If your publication is not there, please contact your customer service representative to get the latest copy.

Important definitions

WARNING
Indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury.

CAUTION
Indicates a potentially hazardous situation that, if not avoided, could result in damage to equipment.

NOTE
Provides other helpful information that does not fall under the warning or caution categories.

Woodward reserves the right to update any portion of this publication at any time. Information provided by Woodward is believed to be correct and reliable. However, Woodward assumes no responsibility unless otherwise expressly undertaken.

© Woodward
All Rights Reserved.
Revision History

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Editor</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW</td>
<td>10-05-05</td>
<td>TE</td>
<td>Release based on 37416B + update to reflect the new functionality</td>
</tr>
<tr>
<td>A</td>
<td>12-01-10</td>
<td>TE</td>
<td>Minor changes</td>
</tr>
</tbody>
</table>

Content

CHAPTER 1. GENERAL INFORMATION ... 5
Document Overview .. 5
Short Description ... 6

CHAPTER 2. easYgen-3200 NAVIGATION / OPERATION ... 7
Navigation ... 8
Operation .. 29
 Display .. 31
 Mode ... 32
 Operation .. 33
 LogicsManager ... 34

CHAPTER 3. easYgen-3100 LEDS .. 36

CHAPTER 4. FUNCTIONAL DESCRIPTION .. 37
Overview ... 37
Application Modes ... 38
 Application Mode {0} – Start/Stop .. 38
 Application Mode {1o} – Open GCB .. 38
 Application Mode {1oc} – Open/Close GCB ... 38
 Application Mode {2oc} – Open/Close GCB/MCB .. 38
Operating Modes .. 39
 Operating Mode STOP .. 39
 Operating Mode MANUAL .. 40
 Operating Mode AUTOMATIC .. 41

CHAPTER 5. easYgen-3200 CONFIGURATION ... 43
Structure of the Parameters ... 43
Parameters .. 46
 Language .. 46
 Real-Time Clock - Time .. 46
 Real-Time Clock - Date ... 47
 Display Contrast ... 47
 Password ... 48
 Deactivate Horn ... 48
 Factory (Default) Values ... 48

APPENDIX A. DISPLAY MESSAGES .. 49
Status Messages ... 49
Alarm Messages .. 52

APPENDIX B. RESTORING A LANGUAGE SETTING .. 59
Figures And Tables

Figures

Figure 2-1: Front panel and display .. 7
Figure 2-2: Screen - Level overview ... 29
Figure 3-1: Position of the LEDs ... 36
Figure 5-1: Configuration screens (overview) .. 43
Figure 5-2: Front panel and display ... 59

Tables

Table 1-1: Manual - Overview ... 5
Table 2-1: Display - Measuring values ... 31
Table 4-1: Functional description - Overview .. 37
Table 4-2: Functional description - AMF conditions ... 41
Table 5-1: Message IDs for analog inputs ... 58
Table 5-2: Message IDs for external analog inputs .. 58
Table 5-3: Message IDs for discrete inputs ... 58
Table 5-4: Message IDs for external discrete inputs ... 58
Table 5-5: Message IDs for flexible limits .. 58
Intended Use The unit must only be operated as described in this manual. The prerequisite for a proper and safe operation of the product is correct transportation, storage, and installation as well as careful operation and maintenance.

What are the differences between the easYgen-3000 Series Package P1 & Package P2?

easYgen-3000 Series

<table>
<thead>
<tr>
<th></th>
<th>Package P1</th>
<th>Package P2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freely configurable PID controllers</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>External discrete inputs / outputs via CANopen (maximum)</td>
<td>16 / 16</td>
<td>32 / 32</td>
</tr>
<tr>
<td>External analog inputs / outputs via CANopen (maximum)</td>
<td>-</td>
<td>16 / 4</td>
</tr>
</tbody>
</table>

NOTE

This manual has been developed for a unit equipped with all available options. Inputs/outputs, functions, configuration screens, and other details described which do not exist on your unit may be ignored.

The present manual has been prepared to enable the installation and commissioning of the unit. Because of the large variety of parameter settings, it is not possible to cover every combination. The manual is therefore only a guide. In case of incorrect entries or a total loss of functions, the default settings may be taken from the list of parameters in the configuration manual 37469 or from ToolKit and the respective *.SID file.
The easYgen-3000 Series generator set controllers provide the following functions:

- Genset control
- Engine, mains and generator protection
- Engine data measurement -
 - oil pressure and temperature, coolant temperature, battery voltage, speed, service hours, etc.
- Generator and mains data measurement -
 - voltage, current, power, kvar, kW, kWh, etc.
- Load/var sharing for up to 32 participants
- Load-dependent start/stop
- Automatic, Manual, and Stop operating modes
- Application modes -
 - no CB operation
 - open GCB
 - open/close GCB
 - open/close GCB/MCB
- LogicsManager for processing measured values, discrete inputs, and internal states
- Engine starter sequencing
- Alarm display with circuit breaker trip and engine shutdown
- AMF (automatic mains failure) standby genset control, with automatic engine start on a mains failure detection and open transition breaker control
- Critical mode operation
- Synchronizing (phase matching and slip frequency) and mains parallel operation
- External frequency, voltage, power, and power factor set point control via analog input or interface
- FIFO event history with 300 entries
- Multilingual user interface (English, German, French, Spanish, Italian, Portuguese, Turkish, Russian, Chinese, Japanese)
- ECU data visualization via J1939
- CAN bus communication to engine controllers, plant management systems, expansion boards, and ToolKit configuration and visualization software
- RS-485 Modbus communication with plant management systems
- RS-232 Modbus communication with plant management systems and ToolKit configuration and visualization software

Type designation is as follows:

```plaintext
EASYGEN-3200-5 (easYgen-3200, 100 & 400 Vac inputs, ../5 A measuring inputs, front panel flush-mounting)
EASYGEN-3100-1 (easYgen-3100, 100 & 400 Vac inputs, ../1 A measuring inputs, cabinet back mounting)
```
Chapter 2.

easYgen-3200 Navigation / Operation

Figure 2-1 illustrates the front panel/display of the easYgen-3200 with push buttons, LEDs and Liquid Crystal display (LC display). A short description of the front panel is given below.

NOTE

This push button is always active and will stop the engine when pressed, except the operating modes are selected externally. In this case, the AUTO and MAN Mode push buttons are also disabled.

Function blocks

Buttons that have the same function within one screen are grouped into function blocks. The function blocks are defined as:

- **Display**........ Change the method of voltage and power calculations displayed (page 29).
- **Mode**......... Change the mode of operation (page 32).
- **Operation**.... Used to perform manual operation of the genset and the breakers (page 33).
- **Navigation**... Navigation between system and configuration screens, and alarm list (page 33).

Push buttons

The push buttons on the front panel are assigned to softkeys on the display. Each softkey is assigned to a function depending on the mode of operation.

Liquid Crystal Display (LC display)

The display contains softkey characters, measuring values, modes of operation, and alarms. The functionality of the display screens as well as the description of the functions is detailed in the "Navigation" section (page 8).

LED

The left LED indicates that the unit is in STOP mode. The right LED indicates that alarm messages are active / present in the control unit.
Individual display screens are listed in the following text. All softkeys, which are available in the individual screens are described with their function.

Screen "Operating values - overview" / "Starting screen"

STOP operating mode:
This screen appears upon startup of the unit.

- Toggle between delta/wye voltage display. The index of the "V" symbol indicates whether delta or wye voltage is displayed and which phases are displayed.
- Change into AUTOMATIC operating mode.
- Change into MANUAL operating mode.
- Change into STOP operating mode.

AUTOMATIC operating mode:
- Display the alarm list (unacknowledged alarms).
- Display the configuration menu screen.
- Display the indication menu screen.

MANUAL operating mode:
- This softkey is only displayed in front of the mains symbol if the Alarm LED is flashing (An alarm is present, which has not yet been acknowledged as 'Seen'). This softkey resets the horn and acknowledges the alarm as 'Seen'.
- Operating mode MANUAL: start/stop engine.
- Operating mode MANUAL: open GCB/MCB.
- Operating mode MANUAL: close GCB/MCB.

NOTE
If the mains data display is disabled (refer to Configuration Manual 37469), above screens will only show generator data with bigger digits.
Screen "Alarm list" [all application modes]

This screen appears after pressing the "Alarm" softkey in the starting screen. All alarm messages, which have not been acknowledged and cleared, are displayed. Each alarm is displayed with the alarm message and the date and time of the alarm occurred in the format yy-mon-dd hh:mm:ss.ss. Please note, that self-acknowledging alarm messages get a new timestamp when initializing the unit (switching on). The symbol indicates that this alarm condition is still present. A maximum of 16 alarm messages can be displayed. If 16 alarm messages are already displayed and further alarm messages occur, these will not be displayed before displayed alarm messages are acknowledged and thus deleted from the list. The "!" following the letter symbols A through E indicate whether an alarm class is present \(\checkmark \) or not \(\wedge \).

\[\text{Return to the starting screen.} \]

\[\text{Scroll up to next alarm message.} \]

\[\text{Scroll down to next alarm message.} \]

\[\text{The selected alarm message (displayed inverted) will be acknowledged. This is only possible, if the alarm condition is no longer present. If the Alarm LED is still flashing (an alarm is present, which has not yet been acknowledged as 'Seen'), this softkey resets the horn and acknowledges the alarm as 'Seen'.} \]

Screen "Next Page" [all application modes]

This screen appears after pressing the "Next Page" softkey.

\[\text{Return to the starting screen.} \]

Setpoints
Display the setpoints screen.

Synchroscope
Display the synchroscope screen.

Sequencing
Display the sequencing screen.

Counters and service
Display the counters and service screen.

Measured values
Display the measured values screen.

Diagnostic
Display the diagnostic screen.
MANUAL operating mode:

This screen appears after pressing the "Setpoints" softkey in the "Next page" screen. The set point is displayed on the left and the actual value is displayed on the right half of the screen. The symbol ◊ indicates the mains power and ◊ indicates the generator power. The figures 1 or 2 indicate whether set point 1 or set point 2 is used in AUTOMATIC operation. The source, which is used for set point 1 or set point 2, is displayed with the respective LogicsManager function number.

The set points may only be adjusted if the respective controller is enabled. Frequency and voltage may be adjusted within the configured operating limits. Active power may be adjusted between 0 and the configured load control setpoint maximum. The power factor may be adjusted between 0.71 leading and 0.71 lagging.

AUTOMATIC operating mode:

Return to "Next page" screen.

Change into AUTOMATIC operating mode.

Change into MANUAL operating mode.

Scroll up one set point.

Scroll down one set point.

Raise the selected set point.

Lower the selected set point.

P Real power
 Constant = fixed generator load control
 Import = fixed import power control
 Export = fixed export power control

PF Power factor

V Voltage

f Frequency
Screen "Synchroscope"

This screen appears after pressing the "Synchroscope" softkey in the "Next page" screen.

- **Return to "Next page" screen.**

Synchroscope generator/busbar
Display the generator / busbar synchroscope screen.

Synchroscope busbar/mains
Display the busbar / mains synchroscope screen.

Screen "Synchroscope generator / busbar"

This screen appears after pressing the "Synchroscope Gen. / Bus-bar" softkey in the "Synchroscope" screen. The square symbol indicates the actual phase angle between busbar and generator. The 12 o'clock position on the top means 0° and the 6 o'clock position on the bottom means 180°. The frequency and voltage differences are indicated in the center of the circle.

- **Return to "Synchroscope" screen.**

- **Change into AUTOMATIC operating mode.**

- **Change into MANUAL operating mode.**

- **Change into STOP operating mode.**

- **Operating mode MANUAL: Raise voltage/frequency.**

- **Operating mode MANUAL: Lower voltage/frequency.**

- **Operating mode MANUAL: start/stop engine.**

- **Operating mode MANUAL: open GCB/MCB.**

- **Operating mode MANUAL: close GCB/MCB.**
This screen appears after pressing the "Synchroscope Busbar / Mains" softkey in the "Synchroscope" screen. The square symbol indicates the actual phase angle between busbar and mains. The 12 o'clock position on the top means 0° and the 6 o'clock position on the bottom means 180°. The frequency and voltage differences are indicated in the center of the circle.

- Return to "Synchroscope" screen.
- Change into AUTOMATIC operating mode.
- Change into MANUAL operating mode.
- Change into STOP operating mode.

Operating mode MANUAL: Raise voltage/frequency.
Operating mode MANUAL: Lower voltage/frequency.
Operating mode MANUAL: start/stop engine.
Operating mode MANUAL: open GCB/MCB.
Operating mode MANUAL: close GCB/MCB.
This screen appears after pressing the "Sequencing" softkey in the "Next page" screen. The sequencing screen shows all gensets participating in load sharing. The operation mode of each genset as well as the state of its GCB is shown on this screen. The symbol below the generator number indicates AUTOMATIC operating mode, indicates MANUAL, and indicates STOP. The field below shows whether the respective GCB is closed () or open (). The bottom field displays the actual load sharing values. If this device is not participating in load sharing, "LD start stop Off" is displayed here.

<table>
<thead>
<tr>
<th>In operation</th>
<th>Sequencing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Return to "Next page" screen.

Scroll down to genset 17 through 32 display.

Scroll up to genset 1 through 16 display.

Change into AUTOMATIC operating mode.

Change into MANUAL operating mode.

Change into STOP operating mode.
Screen "Counters and service" [all application modes]

This screen appears after pressing the "Counters and service" softkey in the "Next page" screen.

Return to "Next page" screen.

Scroll down to the energy counter display screen.

Scroll up to the operating hours counter display screen.

Change into AUTOMATIC operating mode.

Change into MANUAL operating mode.

Change into STOP operating mode.

Operating mode MANUAL: start/stop engine.

Operating mode MANUAL: open GCB/MCB.

Operating mode MANUAL: close GCB/MCB.

Hours of operation 0.00h - Operating hours counter

0.00h = Total operating hours (hours in operation, the decimals are hundredths of an hour)

Number of starts 00 - Start counter

00 = Total number of starts

Hours until maintenance 000h - Maintenance counter

000h = Hours until next maintenance

Days until maintenance 000h - Maintenance counter

000h = Days until next maintenance

Gen. positive active energy 0.00 MWh - Generator positive active energy

0.00MWh = Total generator positive active energy

Gen. positive reactive energy 0.00 Mvarh - Generator positive reactive energy

0.00Mvarh = Total generator positive reactive energy

Gen. negative reactive energy 0.00 Mvarh - Generator negative reactive energy

0.00Mvarh = Total generator negative reactive energy

NOTE

Further information about resetting or setting the counters may be found in the Configuration Manual 37469.
Screen "Measured values" [all application modes]

This screen appears after pressing the "Measured values" softkey in the "Next page" screen.

Return to the "Next page" screen.

Engine (J1939)
Display the Engine (J1939) interface screen.

Analog inputs/outputs
Display the analog inputs and outputs indication screen.

Discrete inputs/outputs
Display the discrete inputs and outputs indication screen.

Generator
Display the generator indication screen.

Busbar
Display the busbar indication screen.

Mains
Display the mains indication screen.

Screen "Engine (J1939)" [all application modes]

This screen appears after pressing the "Engine (J1939)" softkey in the "Measured values" screen.

Return to "Measured values" screen.

J1939 Special
Display the J1939 Special interface screen.

J1939 Analog values 1
Display the J1939 Analog values 1 screen.

J1939 Analog values 2
Display the J1939 Analog values 2 screen.

J1939 Analog values 3
Display the J1939 Analog values 3 screen.

J1939 Analog values 4
Display the J1939 Analog values 4 screen.

J1939 Status
Display the J1939 Status interface screen.
This screen appears after pressing the "J1939 Special" softkey in the "Engine (J1939)" screen. The status of the J1939 Scania S6 error messages is displayed here if the unit is configured accordingly.

Return to "Engine (J1939)" screen.

Reset the blink code. To do this, disable the ignition (terminal U15), press this softkey, and enable the ignition again within 2 seconds. *1 Request a blink code for one error message from the ECU. Repeated pressing of this softkey displays all stored error messages. *1

*1 (only visible if parameter ID 15127 is configured to “ON”)

This screen appears after pressing the "J1939 Status" softkey in the "Engine (J1939)" screen. The status of the J1939 interface is displayed here.

Return to "Engine (J1939)" screen.

The active J1939 diagnosis trouble codes are displayed here.
SPN = Suspect Parameter Number
FMI = Failure Mode Indicator
OC = Occurrence Count

Scroll up to the “J1939 Status” screen.

The previously active J1939 diagnosis trouble codes are displayed here.
SPN = Suspect Parameter Number
FMI = Failure Mode Indicator
OC = Occurrence Count

These screens appear after pressing the "Analog inputs/outputs" softkey in the "Measured values" screen. The analog inputs and outputs are displayed. The analog outputs are displayed as a percentage of the selected hardware range, i.e. 50% of a 0 to 20 mA output refer to 10 mA.

- Return to "Measured Values" screen.
- Scroll up display screen.
- Scroll down display screen.

Change to the external analog IO screens.
Change to the internal analog IO screens.
Change into AUTOMATIC operating mode.
Change into MANUAL operating mode.
Change into STOP operating mode.

Operating mode MANUAL: start/stop engine.
Operating mode MANUAL: open GCB/MCB.
Operating mode MANUAL: close GCB/MCB.
This screen appears after pressing the "Discrete inputs/outputs" softkey in the "Measured values" screen. Discrete input and discrete output status are displayed.

- Return to "Measured Values" screen.
- Change display screen to external discrete IOs.
- Change display screen to internal discrete IOs.
- Change into AUTOMATIC operating mode.
- Change into MANUAL operating mode.
- Change into STOP operating mode.

Status display of the discrete inputs and discrete outputs. (Note: The configured logic for the discrete input "N.O./N.C." will determine how the easYgen reacts to the state of the discrete input. If the respective DI is configured to N.O, the unit reacts on the energized state; if it is configured to N.C., it reacts on the de-energized state.)

Discrete input:
- Energized
- De-energized

Discrete output:
- Relay activated
- Relay de-activated

Operating mode MANUAL: start/stop engine.
- Operating mode MANUAL: open GCB/MCB.
- Operating mode MANUAL: close GCB/MCB.
This screen appears after pressing the "Generator" softkey in the "Measured values" screen. All measured generator values are displayed in this screen.

Return to "Measured values" screen.

Scroll down display screen to additional generator values.

Scroll up display screen to main generator values.

Reset the maximum value display.

Change into AUTOMATIC operating mode.

Change into MANUAL operating mode.

Change into STOP operating mode.

Operating mode MANUAL: start/stop engine.

Operating mode MANUAL: open GCB/MCB.

Operating mode MANUAL: close GCB/MCB.

V Voltage
I......... Current
P....... Real power
Q....... Reactive power
S....... Apparent power
PF Power factor

NOTE
Which values are shown in the display and whether they are correct depends on the measurement type.
Screen "Busbar/System" [all application modes]

This screen appears after pressing the "Busbar/System" softkey in the "Measured values" screen. All measured busbar values are displayed in this screen.

- Return to "Measured values" screen.
- Change into AUTOMATIC operating mode.
- Change into MANUAL operating mode.
- Change into STOP operating mode.

- Operating mode MANUAL: start/stop engine.
- Operating mode MANUAL: open GCB/MCB.
- Operating mode MANUAL: close GCB/MCB.
This screen appears after pressing the "Mains" softkey in the "Measured values" screen. All measured generator values are displayed in this screen.

- Return to "Measured values" screen.
- Scroll down display screen to additional mains values.
- Scroll up display screen to main mains values.
- Reset the maximum value display.
- Change into AUTOMATIC operating mode.
- Change into MANUAL operating mode.
- Change into STOP operating mode.

Operating mode MANUAL: start/stop engine.
Operating mode MANUAL: open GCB/MCB.
Operating mode MANUAL: close GCB/MCB.

V Voltage
I......... Current
P....... Real power
Q....... Reactive power
S....... Apparent power
PF Power factor

NOTE

Which values are shown in the display and whether they are correct depends on the measurement type.
Screen "Diagnostic"

This screen appears after pressing the "Diagnostic" softkey in the "Next page" screen.

- **LogicsManager conditions**
 - Display the LogicsManager conditions screen.

- **Actual date and time**
 - Display the actual date and time screen.

- **Event History**
 - Display the event history screen.

- **Version**
 - Display the version screen.

- **Mains decoupling**
 - Display the mains decoupling screen.

- **Miscellaneous**
 - Display the miscellaneous screen.

![Screen "Diagnostic" table]

[all application modes]
This screen appears after pressing the "LogicsManager conditions" softkey in the "Diagnostic" screen. You are able to display the conditions of all LogicsManager command variables, which are located in their respective groups.

- Return to "Diagnostic" screen.

- Scroll up one group / command variable.

- Scroll down one group / command variable.

- Select the highlighted command variable group and display the state of the command variables in this group.

- Status display of the command variables:
 - The command variables is TRUE
 - The command variables is FALSE

This screen appears after pressing the "Actual date and time" softkey in the "Diagnostic" screen. This screen displays the actual date and time.

- Return to "Diagnostic" screen.

- Change into AUTOMATIC operating mode.

- Change into MANUAL operating mode.

- Change into STOP operating mode.

- Operating mode MANUAL: start/stop engine.

- Operating mode MANUAL: open GCB/MCB.

- Operating mode MANUAL: close GCB/MCB.

\[xxxx-yyy-zz \text{ - Date} \]
\[xxxx = \text{Year} \]
\[yyy = \text{Month} \]
\[zz = \text{Day} \]

\[xx:yy:zz \text{ - Time} \]
\[xx = \text{Hour} \]
\[yy = \text{Minute} \]
\[zz = \text{Second} \]
Screen "Event History" [all application modes]

This screen appears after pressing the "Event History" softkey in the "Diagnostic" screen. A date/time stamp is added to each entry. Additional characters (+ and -) indicate the state of the event. The "+" character indicates an condition that is still active. If the condition is no longer present anymore, it will be displayed again, but with a "-" indication.

- Return to "Diagnostic" screen.
- Scroll up one event.
- Scroll down one event.
- The selected (highlighted) entry may be deleted with this softkey if the password for code level CL2 or higher is entered.

Screen "Version" [all application modes]

This screen appears after pressing the "Version" softkey in the "Diagnostic" screen. This screen displays the serial number of the unit and the firm- and software P/N, version, and revision.

- Return to "Diagnostic" screen.
- Change into AUTOMATIC operating mode.
- Change into MANUAL operating mode.
- Change into STOP operating mode.
- Operating mode MANUAL: start/stop engine.
- Operating mode MANUAL: open GCB/MCB.
Screen "Mains decoupling" [all application modes]

This screen appears after pressing the "Mains decoupling" softkey in the "Diagnostic" screen. The "Test"-Button starts a test mode which allows a comfortable mains decoupling configuration.

- Return to "Diagnostic" screen.
- Scroll up the selection.
- Scroll down the selection.
- Switch the mains decoupling "Test" ON or OFF.
- Raise the selected value.
- Lower the selected value.

Screen "Miscellaneous" [all application modes]

This screen appears after pressing the "Miscellaneous" softkey in the "Diagnostic" screen.

- Return to "Diagnostic" screen.
- Scroll up the selection.
- Scroll down the selection.
- Open the selected option.
Screen "CAN interface 1/2 state"

This screen appears after selecting "CAN interface 1/2 state" in the "Miscellaneous" screen.

Return to "Miscellaneous" screen.

Change to "CAN interface 1 state" screen.

Change to "CAN interface 2 state" screen.

Change into AUTOMATIC operating mode.

Change into MANUAL operating mode.

Change into STOP operating mode.

Status display of the respective bits:

- The respective bit is enabled
- The respective bit is disabled

Can bus 1 state:

- Bit 1 a TPDO has incorrect mapping parameters
- Bit 2 an RPDO has incorrect mapping parameters
- Bit 3 a TPDO has more than 8 bytes
- Bit 4 an RPDO has more than 8 bytes

CAN 1 monitoring (active state):

- Bit \{x\} RPDO\{x\} is not received at the moment

CAN 1 monitoring (latched state):

- Bit \{x\} RPDO\{x\} has not been received

Can bus 2 state:

- Bit 13 one Node ID is assigned to more than 1 device

CAN 2 monitoring (active state):

- Bit \{x\} CAN Node ID \{x\} is not received at the moment

CAN 2 monitoring (latched state):

- Bit \{x\} CAN Node ID \{x\} has not been received

Screen "Load diagnostic"

This screen appears after selecting "Load diagnostic" in the "Miscellaneous" screen and displays the total CAN bus load as well as the load on the individual CAN buses.

Return to "Miscellaneous" screen.

Change into AUTOMATIC operating mode.

Change into MANUAL operating mode.

Change into STOP operating mode.
Screen "Parameter"
[all application modes]

<table>
<thead>
<tr>
<th>Configure language / clock</th>
<th>Parameter overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configure display</td>
<td>Configuration</td>
</tr>
<tr>
<td>Lamp test</td>
<td>Enter password</td>
</tr>
</tbody>
</table>

This screen appears after pressing the "Parameter" softkey.

- Return to the starting screen.

- **Configure language / clock**
 Display the language and clock configuration screen.

- **Configure display**
 Display the display configuration screen.

- **Lamp test**
 This softkey illuminates all LEDs to check their function.

- **Configuration**
 Display the configuration menu screen.

- **Enter password**
 Display the password entry screen.

- **System management**
 Display the system management configuration screen.

Screen "Configure language / clock"
[all application modes]

<table>
<thead>
<tr>
<th>Configure language / clock</th>
<th>Parameter overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language</td>
<td>English</td>
</tr>
<tr>
<td>Day</td>
<td>15</td>
</tr>
<tr>
<td>Minute</td>
<td>00</td>
</tr>
<tr>
<td>Second</td>
<td>07</td>
</tr>
<tr>
<td>Hour</td>
<td>09</td>
</tr>
<tr>
<td>Month</td>
<td>04</td>
</tr>
<tr>
<td>Year</td>
<td>08</td>
</tr>
</tbody>
</table>

This screen appears after pressing the "Configure language / clock" softkey in the "Parameter" screen.

- Return to the "Parameter" screen.

- Scroll up one parameter.

- Scroll down one parameter.

- Select the parameter to be configured with this softkey.

 - Change the parameter using the , , and softkeys.

 - Confirm the change with the softkey or exit parameter configuration without any changes using the softkey.

Screen "Configure display"
[all application modes]

<table>
<thead>
<tr>
<th>Configure display</th>
<th>Parameter overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>BRIGHTNESS</td>
</tr>
<tr>
<td>-</td>
<td>CONTRAST</td>
</tr>
</tbody>
</table>

This screen appears after pressing the "Configure display" softkey in the "Parameter" screen. The contrast and brightness of the display may be configured here.

- Return to the "Parameter" screen.

- Increase contrast/brightness.

- Decrease contrast/brightness.

- Pressing and holding the STOP button for at least 10 seconds restores the default settings for contrast and brightness in case the settings have been adjusted in a way that the display can't be read anymore.
Screen "Configuration" [all application modes]

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Parameter screen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configure interfaces</td>
<td>Parameter screen</td>
</tr>
<tr>
<td>Configure LogicsManager</td>
<td>Parameter screen</td>
</tr>
<tr>
<td>Configure counters</td>
<td>Parameter screen</td>
</tr>
<tr>
<td>Configure application</td>
<td>Parameter screen</td>
</tr>
<tr>
<td>Configure monitoring</td>
<td>Parameter screen</td>
</tr>
<tr>
<td>Configure measurement</td>
<td>Parameter screen</td>
</tr>
</tbody>
</table>

This screen appears after pressing the "Configuration" softkey in the "Parameter" screen.

- Return to the "Parameter" screen.

Configure interfaces
Display the interface configuration screen.

Configure LogicsManager
Display the LogicsManager configuration screen.

Configure counters
Display the counter configuration screen.

Configure application
Display the application configuration screen.

Configure monitoring
Display the monitoring configuration screen.

Configure measurement
Display the measurement configuration screen.

Screen "Enter password" [all application modes]

<table>
<thead>
<tr>
<th>Enter password</th>
<th>Parameter screen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Password display</td>
<td>Parameter screen</td>
</tr>
<tr>
<td>Code level display</td>
<td>Parameter screen</td>
</tr>
<tr>
<td>Password for CAN interface 1</td>
<td>Parameter screen</td>
</tr>
<tr>
<td>Code level CAN interface 1</td>
<td>Parameter screen</td>
</tr>
<tr>
<td>Password for serial interface 3</td>
<td>Parameter screen</td>
</tr>
<tr>
<td>Code level serial interface 3</td>
<td>Parameter screen</td>
</tr>
<tr>
<td>Password for serial interface 2</td>
<td>Parameter screen</td>
</tr>
<tr>
<td>Code level serial interface 2</td>
<td>Parameter screen</td>
</tr>
</tbody>
</table>

This screen appears after pressing the "Enter password" softkey in the "Parameter" screen. Only the password may be entered using this screen. The code levels are only displayed depending on the entered password.

- Return to the "Parameter" screen.

- Scroll up one parameter.

- Scroll down one parameter.

- Select the parameter to be configured with this button.

- Change the parameter using the , , and softkeys.

- Confirm the change with the softkey or exit parameter configuration without any changes using the softkey.

Screen "System management" [all application modes]

<table>
<thead>
<tr>
<th>System management</th>
<th>Parameter screen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factory default settings</td>
<td>Parameter screen</td>
</tr>
</tbody>
</table>

This screen appears after pressing the "System management" softkey in the "Parameter" screen. You may find a detailed structure of the configuration screens in the easYgen-3200 Configuration section starting on page 43.

- Return to the "Parameter" screen.

- Scroll up one parameter.

- Scroll down one parameter.

- Select the parameter to be configured with this button.

- Change the parameter using the , , and softkeys.

- Confirm the change with the softkey or exit parameter configuration without any changes using the softkey.
Operation

The display is partitioned into different areas to give an overview of the displayed data.

"Values"

The "values" section of the screen illustrates all measured power related information including voltages, currents, frequencies, power, and power factor values.

"Operation state"

The "operation state" section of the screen shows the actual operating information. Refer to Appendix A: Status Messages on page 49 for a list of all operation states.
"Alarm Message"

The "alarm message" section of the screen shows the last alarm message that is occurred and not yet acknowledged. Refer to Appendix A: Alarm Messages on page 52 for a list of all alarm messages.

"Operation"

The "operation" section of the screen has a single-line diagram of the system application showing current status of the engine and power circuit breakers. This level is also used for manual operation of the genset.

"Softkeys"

The softkey characters permit navigation between screens, levels and functions as well as configuration and operation.
Display

Softkey "Voltage display"

The voltage display softkey changes the type of voltage display. The amount of information available from the system depends on how the measuring is configured in the control. Table 2-1 illustrates what values are available depending on the configured measurement type.

<table>
<thead>
<tr>
<th>Measuring point</th>
<th>Scroll display</th>
<th>Symbol of the displayed voltage</th>
<th>Displayed at parameter setting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Soft key</td>
<td></td>
<td>3Ph 4W</td>
</tr>
</tbody>
</table>

Generator

0× (6×)	\(V_{L-2} \) Delta L1-L2	yes yes --- ---
1×	\(V_{L-3} \) Delta L2-L3	yes --- --- ---
2×	\(V_{L-4} \) Delta L3-L1	yes --- --- ---
3×	\(V_{N} \) Wye L1-N	yes --- --- ---
4×	\(V_{N} \) Wye L2-N	yes --- --- ---
5×	\(V_{N} \) Wye L3-N	yes --- --- ---

Mains

0× (6×)	\(V_{L-2} \) Delta L1-L2	yes yes --- ---
1×	\(V_{L-3} \) Delta L2-L3	yes --- --- ---
2×	\(V_{L-4} \) Delta L3-L1	yes --- --- ---
3×	\(V_{N} \) Wye L1-N	yes --- --- ---
4×	\(V_{N} \) Wye L2-N	yes --- --- ---
5×	\(V_{N} \) Wye L3-N	yes --- --- ---

Table 2-1: Display - Measuring values
Mode

Softkeys "Mode"

By pressing the softkeys "AUTO Mode", "MAN Mode" or "STOP", the operating mode is selected. Depending on the application mode selected, different softkeys are enabled or disabled in the display. The active operation mode is displayed left of the engine symbol. If the operation mode STOP is selected, the LED next to the push button is illuminated in addition to the mode being displayed left of the engine symbol.

Note: If the control unit has been configured for external operating mode selection, the AUTO and MAN Mode softkeys are not displayed and the STOP push button is disabled. The operating mode cannot be changed.

STOP Operating mode

When STOP is selected, the engine is stopped. The STOP mode is indicated in the lower left corner of the display by the symbol.

AUTOMATIC Operating mode

When AUTOMATIC is selected, the control unit manages all engine start/stop and breaker control functions. These functions are performed in accordance with how the control is configured. The AUTOMATIC mode is indicated in the lower left corner of the display by the symbol.

MANUAL Operating mode

When MANUAL is selected, all engine and breaker control is performed manually via the softkeys along the bottom of the display. The MANUAL mode is indicated in the lower left corner of the display by the symbol.
Operation

Softkeys "Manual Mode"

If the unit is in the MANUAL operating mode (the symbol is displayed in the lower left corner), the softkeys are enabled for manual operation of the engine and the power circuit breakers. The symbols "0" and "1" indicate if a start/stop command is being processed at the moment. The arrows on the breaker symbol indicate if an open/close command is being processed at the moment. The symbol indicates that the engine delayed monitoring has expired and the monitoring functions are enabled. The symbol indicates that power is detected at the respective measuring point (generator, busbar, or mains). The direction of the circular arrow indicates, if the generator or mains rotating field is clockwise (CW) or counter-clockwise (CCW). The arrow symbol at the mains interchange point indicates whether power is exported (Guantanamo Bay) or imported (Guantanamo Bay).

Engine Start/Stop

Starting process: By pressing this softkey the engine is started.
• Successful: If the starting process was successful, the circular arrow indicates that speed is detected and the engine is running. The eye symbol indicates that the engine delayed monitoring has expired and the monitoring functions are enabled.
• Unsuccessful: No change in the display until the start failure message appears.

Stop process: Pressing the softkey again will stop the engine.
• Successful: If the stop process was successful, the circular arrow and the eye symbol disappear.
• Unsuccessful: No change in the display until the stop failure message appears.

Power circuit breaker open/close (GCB/MCB)

Close: By pressing the softkey under the desired circuit breaker, it is closed.
• Successful: If the closing process was successful, the breaker symbol turns horizontal.
• Unsuccessful: If the closing process was not successful, the breaker symbol remains vertical.

Open: To open this breaker this softkey is pressed while the breaker symbol is horizontal. The arrows and the "Open GCB/MCB" messages indicate the open command.
• Successful: If the opening process was successful, the breaker symbol turns vertical.
• Unsuccessful: If the opening process was not successful, the breaker symbol remains horizontal and the arrows will remain within the softkey character until the control is able to open the breaker.

CAUTION
The breakers will open immediately without power reduction. If you want to open the breaker in a no-load condition, you must reduce the load manually in the set point screen.
Some parameters of the easYgen are configured via the LogicsManager (refer to Configuration Manual 37469). A typical LogicsManager screen is shown in the following. You may configure a logical operation using various command variables, signs, logical operators, and delay times to achieve the desired logical output.

![LogicsManager Screen](image)

For configuration of the LogicsManager the softkeys displayed in the right and bottom section are used. The softkey on the upper left opens a help screen. The softkeys are assigned with different functions.

Two delays may also be configured for the output:
- (Delay ON): delay before output becomes TRUE
- (Delay OFF): delay before output becomes FALSE

The squares below each command variable number indicate the actual state of this command variable:
- : the command variable is TRUE
- : the command variable is FALSE

The actual state of the LogicsManager output is indicated by the square in the upper left corner.

Leave current screen ("Escape" / "ESC")

By pressing this softkey character you exit and go to the previous screen. If the Escape key is used to leave a LogicsManager configuration screen, any unconfirmed changes made will not be stored.

Select parameter

By pressing these softkey characters you may select the LogicsManager parameter to be configured upwards or downwards.

Confirm selection

By pressing this softkey character you confirm the configured option of the selected LogicsManager parameter.

Change option

By pressing these softkey characters you may change the option of the selected LogicsManager parameter upwards or downwards.

Change variable group/cursor position

Command variable selection field:

By pressing this softkey character you may change the command variable group. The command variables within a group may be changed using the + and - softkeys.

Time delay configuration field:

By pressing this softkey character you may change the cursor position. The selected digit may be changed using the + and - softkeys.
Help button

By pressing this softkey character you get to a help screen, which displays the logical operators of the LogicsManager. You may return to the LogicsManager with the Escape softkey.
Chapter 3.
easYgen-3100 LEDs

The easYgen-3100 unit with metal housing and without display and buttons features two LEDs on the front plate. The two LEDs have the following functionality:

- **COMMS LED**
 - NOT illuminated: no data is received by any interface
 - Blinking green: data is received by any interface, the blinking rate increases with the load on the interfaces until it is:
 - Illuminated green: increased data traffic is received by any interface
 - Illuminated red: the number of participants on the load share bus does not match with the configuration
 - Illuminated red/green (appears as orange): the number of participants on the load share bus does not match with the configuration and data is received by any interface

- **RUN LED**
 - NOT illuminated: the unit is not ready for operation
 - Illuminated green: the unit is ready for operation and no alarm is present
 - Blinking green/red: the unit is ready for operation, but a warning alarm (alarm class A or B) is present
 - Illuminated red: the unit is ready for operation, but a shutdown alarm (alarm class C, D, E or F) is present
 - Blinking red: the unit is ready for operation, but a shutdown and a warning alarm is present

NOTE
Definition: An alarm is "present" means that the alarm is active or latched (triggered).

Figure 3-1 indicates the position of the LEDs on the front plate of the easYgen-3100 unit.
Chapter 4.
Functional Description

NOTE
This functional description of the easYgen refers to both versions, the easYgen-3100 and the easYgen-3200. However, every information concerning display, push buttons (softkeys), and MANUAL operation mode refers to the easYgen-3200 only.

Overview

<table>
<thead>
<tr>
<th>Application Mode</th>
<th>{0}</th>
<th>{1o}</th>
<th>{1oc}</th>
<th>{2oc}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation Mode</td>
<td>MAN</td>
<td>AUTO</td>
<td>MAN</td>
<td>AUTO</td>
</tr>
</tbody>
</table>

Operate the engine

- **Start engine by:**
 - the engine push button (Softkey) YES --- YES --- YES --- YES ---
 - the discrete inputs --- YES --- YES --- YES --- YES ---
 - emergency power (AMF) --- --- --- --- --- --- --- --- YES
 - the interface --- YES --- YES --- --- --- --- --- YES

- **Stop engine by:**
 - the STOP push button YES YES YES YES YES YES YES YES
 - the engine push button (Softkey) YES --- YES --- YES --- YES --- YES ---
 - emergency power (AMF) --- --- --- --- --- --- --- --- YES
 - the LogicsManager --- YES --- YES --- YES --- YES --- YES ---
 - an alarm (i.e. overvoltage) YES YES YES YES YES YES YES YES

Operate GCB

- **close GCB**
 - the GCB push button (Softkey) --- --- --- --- --- --- --- --- YES ---
 - emergency power (AMF) --- --- --- --- --- --- --- --- --- YES ---
 - the LogicsManager --- --- --- --- --- --- --- --- --- YES ---

- **open GCB**
 - the STOP push button YES YES YES YES YES YES YES YES
 - the GCB push button (Softkey) YES --- YES --- YES --- YES --- YES ---
 - the LogicsManager --- YES --- YES --- YES --- YES --- YES ---
 - an alarm (i.e. overvoltage) --- --- YES YES YES YES YES YES YES

Operate MCB

- **open MCB**
 - the MCB push button (Softkey) --- --- --- --- --- --- --- --- YES ---
 - emergency power (AMF) --- --- --- --- --- --- --- --- --- YES ---
 - the LogicsManager --- --- --- --- --- --- --- --- --- YES ---

- **close MCB**
 - the MCB push button (Softkey) --- --- --- --- --- --- --- --- YES ---
 - the LogicsManager --- --- --- --- --- --- --- --- --- YES ---

Table 4-1: Functional description - Overview

- **Application Mode** (page 38): depends on the application; defines the number/function of the breakers (\{0\}, \{1o\}, \{1oc\}, \{2oc\}).
- **Operating Mode** (page 39): depends on the application; separates between STOP, MANUAL and AUTOMATIC.
The application mode may be changed only during configuration with the code level CL2 or higher password. The most important features of the four application modes are illustrated in the following section. A description of the functions that are possible during each application mode can be found in the Configuration Manual (parameter 3401, manual 37469). Table 4-1: Functional description - Overview describes which function is available in each application mode.

Application Mode {0} – Start/Stop

This application mode provides the following functions:
- Measuring of engine/generator parameters (i.e. voltage, frequency, current, power, coolant temperature, oil pressure, etc.)
- Engine start/stop

Application Mode {1o} – Open GCB

This application mode provides the following functions:
- Measuring of engine/generator parameters (i.e. voltage, frequency, current, power, coolant temperature, oil pressure, etc.)
- Engine start/stop
- Engine/generator protection (relay output to open GCB)
- Mains failure detection

Application Mode {1oc} – Open/Close GCB

This application mode provides the following functions:
- Measuring of engine/generator parameters (i.e. voltage, frequency, current, power, coolant temperature, oil pressure, etc.)
- Engine start/stop
- Engine/generator protection (relay output to open GCB)
- GCB operation (relay output to close GCB)
- Mains failure detection

Application Mode {2oc} – Open/Close GCB/MCB

This application mode provides the following functions:
- Measuring of engine/generator parameters (i.e. voltage, frequency, current, power, coolant temperature, oil pressure, etc.)
- Engine start/stop
- Engine/generator protection (relay output to open GCB)
- GCB operation (relay output to close GCB)
- MCB operation (relay output to open and close the MCB)
- Mains failure detection (AMF auto mains failure operation) and automatic engine start/stop
Operating Modes

Operating Mode STOP

NOTE
Selecting the operating mode STOP is not the same as an EMERGENCY STOP. In some cases the easYgen will perform additional logic functions, such as an engine cool down period, before the engine is stopped. It is recommended that an EMERGENCY STOP discrete input be utilized and programmed as an F class alarm.

In the STOP operating mode neither the engine nor the GCB can be operated. Dependent on the application mode the power circuit breakers cannot be operated. If the operating mode STOP has been selected while

the engine was already stopped
- The GCB will not be closed
- The fuel solenoid relay will not be enabled
- The discrete inputs and CAN bus commands are ignored
- The start push buttons (softkeys) are disabled (depending on the previous operating mode)
- The engine/generator monitoring remains de-activated (exception: all monitoring that is not delayed by the engine speed monitoring)

the engine was running
- The GCB is opened
 Requirements:
 - The easYgen is at least in application mode {10} and
 - the GCB is closed
- The MCB will be closed
 Requirements:
 - The easYgen is at least in application mode {20c}
 - the GCB is open
 - the MCB is enabled
- An engine cool down will be performed (the STOP LED is flashing)
- The fuel solenoid relay will be disabled
- The engine/generator monitoring will be de-activated (exception: all monitoring that is delayed by the engine speed monitoring)
- The control unit screen will display the operations as they are performed

the engine performs a cool down
- Pressing the STOP button again causes an immediate stop of the cool down and stops the engine

NOTE
If the conditions of the LogicsManager function "Enable MCB" (parameter 12923) are TRUE, the MCB will be closed again if it is open in STOP operating mode.
Operating Mode **MANUAL**

In the MANUAL operating mode (softkey "Mode MAN") the engine and the power circuit breakers are operated via the push buttons along the bottom of the display (softkeys). All elements that may be operated via the softkeys have a black frame. All other elements cannot be operated. The single line diagram in the lowest line will change according to the application mode.

The single line diagrams are displayed as follows:

Single line diagram for application mode {0}.
When MANUAL operating mode is selected a black frame softkey character will appear around the engine to indicate that the push buttons below this softkey character may be used to start and stop the engine. This is shown below highlighted for the following functions.

- Start the engine
- Stop the engine

Single line diagram for application mode {10}.
For a {10} application both the engine and the GCB softkey characters appear with the following functions. The "X" symbol indicates that a breaker open command is issued or a closure of the breaker is blocked. The dotted breaker line indicates no defined breaker state.

- Start the engine
- Stop the engine
- Open the GCB

Single line diagram for application mode {1oc}.
For a {1oc} application both the engine and the GCB softkey characters appear with the following functions.

- Start the engine
- Stop the engine
- Open the GCB
- Close the GCB

Single line diagram for application mode {2oc}.
For a {2oc} application both the engine, the GCB and the MCB softkey characters appear with the following functions.

- Start the engine
- Stop the engine
- Open the GCB
- Close the GCB
- Open the MCB
- Close the MCB
Operating Mode AUTOMATIC

In the AUTOMATIC operating mode, all engine, GCB, and/or MCB functions are operated via an interface, or automatically by the control unit (i.e., a mains failure). The function of the easYgen depends on the configuration of the unit and how the external signals are used. The start/stop sequence of the engine is described in more detail in manual 37469.

In the following text the main functions are briefly described.

Start engine

Remote start

The engine is started via a remote start signal.

A Start in Auto requires.

- The AUTOMATIC operating mode is enabled.
- The function "Start req. in AUTO" is assigned via the LogicsManager to a discrete input and the conditions are fulfilled (TRUE).
- This discrete input or a start via interface is energized (logically HIGH signal) or the necessary command of the interface protocol is set (for explanation of the interface protocol refer to the interface manual 37472).
- A class C alarm or higher is not present (for explanation of the alarm classes refer to manual 37469).
- The engine is ready for operation.
- The GCB is open.

Mains fault

AMF / Auto mains failure operation (only in application mode {2oc})

If the AUTOMATIC operating mode is enabled and the application mode is configured to {2oc} (2-breaker logic) and the mains fail, the engine and the power circuit breakers will be operated according to the conditions in the following table.

An AMF start requires.

- The AUTOMATIC operating mode is enabled.
- The application mode is configured as {2oc}.
- The parameter "Emergency power" is configured as ON.
- The configured mains failure limits are reached.
- The configured delay times have expired.
- A class C alarm or higher is not present (for explanation of the alarm classes refer to 37469).
- The engine is ready for operation.

<table>
<thead>
<tr>
<th>Status (prior to mains failure)</th>
<th>Action (order)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine</td>
<td>GCB</td>
</tr>
<tr>
<td>0 (stopped)</td>
<td>0 (open)</td>
</tr>
<tr>
<td>0 (open)</td>
<td>1 (closed)</td>
</tr>
<tr>
<td>1 (running)</td>
<td>0 (open)</td>
</tr>
<tr>
<td>0 (open)</td>
<td>1 (closed)</td>
</tr>
</tbody>
</table>

Mains decoupling GCB:

- 1 (closed) 1 (closed) --- 1 (open) 3 (close) 2 (close)

Mains decoupling MCB:

- 1 (closed) 1 (closed) --- (remains closed) 1 (open)

Table 4-2: Functional description - AMF conditions
Functional description of AMF conditions:

- If the engine is not running prior to a mains failure and both, the GCB and MCB are open, the following actions occur:
 1. The engine starts
 2. The GCB closes
 3. The load is supplied by the generator set

- If the engine is not running prior to a mains failure, the GCB is open, and the MCB is closed the following actions occur:
 1. The engine starts
 2. The MCB opens
 3. The GCB closes
 4. The load is supplied by the generator set

- If the engine is running prior to a mains failure, the GCB is open, and the MCB is open the following actions occur:
 1. The GCB closes
 2. The load is supplied by the generator set

- If the engine is running prior to a mains failure, the GCB is open, and the MCB is closed the following actions occur:
 1. The MCB opens
 2. The GCB closes
 3. The load is supplied by the generator set

- If the engine is running prior to a mains failure, the GCB is closed, and the MCB is open the following actions occur:
 1. The generator set continues to supply the load

- If the genset is operating in parallel with the mains prior to a mains failure, both breakers are closed, the following actions occur:
 1. A mains decoupling will be performed and the GCB or MCB will be opened depending on the configuration of the mains decoupling function:
 a. Mains decoupling configured to MCB or MCB->GCB:
 a. The MCB opens
 b. The GCB remains closed
 c. The engine keeps running
 b. Mains decoupling configured to GCB or GCB->MCB:
 a. The GCB opens
 b. The MCB opens after the delay time
 c. The GCB closes
 d. The engine keeps running
 2. The load is supplied by the generator set
Chapter 5.
easyGen-3200 Configuration

This chapter provides information "how to configure the unit via the LC display" as well as the description of all parameters that may be changed without a password. If you have the correct codes to configure the unit (this is verified via passwords), refer to manual 37469 for a description of all parameters, their setting range, and their influence to the operation of the unit.

Structure of the Parameters

By pressing the softkey, the Parameter menu will be displayed to permit configuration of the control unit. The different configuration screens may be displayed by selecting the respective softkey. Refer to Figure 5-1 for a structure of the configuration screens.
Softkeys "Configuration - Enter password"

Navigation through the parameters is carried out using the softkeys and . To edit the selected parameter press . To save the edited parameter press . To exit the parameter without saving any changes press .

Return to the previous screen/exit parameter without saving changes ("Escape")

Navigate........ Pressing the softkey will return the operator to the previous display screen. Edit If it is desired to exit a parameter without saving changes made there, press the softkey and the user will be returned to the previous screen.

Next parameter

This softkey permits the user to navigate down through the parameters. Only the parameters assigned by the active password will be displayed. The parameters that may only be accessed after entering a password are described in the Configuration Manual 37469. If an Asian language is configured, some parameter screens may be displayed with an empty space at the bottom of the parameter list, which may be interpreted as an end of the list, although more parameters exist and are displayed when scrolling down.

Previous parameter

This softkey permits the user to navigate upwards through the parameters.

Decrease/change function

If the desired parameter has been selected by pressing the softkey, and the cursor has been moved to the appropriate position via the softkey, the value of the digit may be decreased by one using the softkey.

Increase/change function

If the desired parameter has been selected by pressing the softkey, and the cursor has been moved to the appropriate position via the softkey, the value of the digit may be increased by one using the softkey.

Select parameter/input confirmation ("Enter")

Navigate........ A highlighted parameter may be entered for configuration by pressing the softkey. This permits the changing of the configured value within the parameter. Edit Any value that has been changed within a parameter is changed and stored in the unit memory by pressing the softkey.
If the parameter has a numeric value (i.e. the password) that is to be changed, the digits must be changed individually. The softkey permits navigation to each cursor position of the number to be changed. See the softkey symbols and for an explanation of how to change the digit.
Parameters

NOTE
A description of all parameters, which may be edited/configured via the display, are described in the Configuration Manual 37469.

Language

Change language

The selection of a language will affect the following text in the control unit:
• Text in the operating field which are not defined by an input (i.e. discrete inputs may be a user-defined text)
• The alarm list and event history texts
• All parameters which may be changed via the unit panel

NOTE
Refer to Appendix B: Restoring a Language Setting on page 59 if your unit is configured to a language you are not able to read or understand.

Real-Time Clock - Time

Adjust clock time: hour
The hour of the current time is set here. Example:
0 0th hour of the day.
23 23nd hour of the day.

Adjust clock time: minute
The minute of the current time is set here. Example:
0 0th minute of the hour.
59 59th minute of the hour.

Adjust clock time: second
The second of the current time is set here. Example:
0 0th second of the minute.
59 59th second of the minute.
Real-Time Clock - Date

<table>
<thead>
<tr>
<th>Day</th>
<th>Adjust date: day</th>
<th>1 to 31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tag</td>
<td>The day of the current date is set here. Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 1st day of the month.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31 31st day of the month.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Month</th>
<th>Adjust date: month</th>
<th>1 to 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monat</td>
<td>The month of the current date is set here. Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 1st month of the year.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 12th month of the year.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Adjust date: year</th>
<th>0 to 99</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jahr</td>
<td>The year of the current date is set here. Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 Year 2000.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>99 Year 2099.</td>
<td></td>
</tr>
</tbody>
</table>

Display Contrast

<table>
<thead>
<tr>
<th>Configure display</th>
<th>Configure display</th>
<th>+ / -</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display konfig.</td>
<td>In the "Configure display" screen, the display contrast and brightness may be increased or decrease using these softkey characters.</td>
<td></td>
</tr>
</tbody>
</table>

- [] Increase the display contrast/brightness.
- [] Decrease the display contrast/brightness.

If the display contrast and/or brightness has been decreased to the point that it is no longer visible, press and hold the STOP button for at least 5 seconds. This will restore the contrast and brightness to the factory default setting.
Password

<table>
<thead>
<tr>
<th>Password display</th>
<th>EN</th>
<th>Password for access via the unit panel</th>
<th>0000 to 9999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Password display</td>
<td>EN</td>
<td>A password must be entered to permit configuration of the unit via the unit panel. If a password is not entered only the displayed parameters may be edited.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code level display</th>
<th>EN</th>
<th>Code level via display</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code level display</td>
<td>EN</td>
<td>This value displays the code level that is currently active for access via the front panel.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Password for CAN interface {x}</th>
<th>EN</th>
<th>Password for access via CAN interface {x}</th>
<th>0000 to 9999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Password for CAN interface {x}</td>
<td>EN</td>
<td>A password must be entered to permit configuration of the unit via CAN interface {x}. If a password is not entered, the displayed parameters may not be edited.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code level CAN interface {x}</th>
<th>EN</th>
<th>Code level CAN-Bus {x}</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code level CAN interface {x}</td>
<td>EN</td>
<td>This value displays the code level that is currently active for access via the CAN bus.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Password for serial interface{x}</th>
<th>EN</th>
<th>Password for access via serial interface {x}</th>
<th>0000 to 9999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Password for serial interface{x}</td>
<td>EN</td>
<td>A password must be entered to permit configuration of the unit via serial interface {x}. If a password is not entered, the displayed parameters may not be edited.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code level serial interface {x}</th>
<th>EN</th>
<th>Code level serial port {x}</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code level serial interface {x}</td>
<td>EN</td>
<td>This value displays the code level that is currently active for access via the serial interface {x}.</td>
<td></td>
</tr>
</tbody>
</table>

Deactivate Horn

<table>
<thead>
<tr>
<th>Time until horn reset</th>
<th>EN</th>
<th>Self acknowledgement of the horn signal</th>
<th>0 to 1,000 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time until horn reset</td>
<td>EN</td>
<td>A horn signal is issued and the alarm LED flashes when a fault condition occurs. This signal will be disabled when the configured time expires. This is the maximum time, for which a horn signal is active (it will also be deactivated if it is acknowledged before).</td>
<td></td>
</tr>
</tbody>
</table>

Factory (Default) Values

<table>
<thead>
<tr>
<th>Factory setting</th>
<th>EN</th>
<th>Factory (Default) Values</th>
<th>YES/NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factory setting</td>
<td>EN</td>
<td>The factory settings (default values) may be loaded. Select YES to enable the following parameter to be displayed. It is possible to load the factory settings (default values) for all parameters, which are accessible in the currently active code level.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set default values</th>
<th>EN</th>
<th>Set default values</th>
<th>YES/NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set default values</td>
<td>EN</td>
<td>Entering YES overwrites the current configured values with the default values. Only those parameters will be reset, which are permitted to change in the selected code level.</td>
<td></td>
</tr>
</tbody>
</table>
Appendix A.
Display Messages

Status Messages

<table>
<thead>
<tr>
<th>Message text and ID</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO mode ready ID 13253</td>
<td>Automatic mode ready for start. The unit is waiting for a start signal in Automatic operating mode and no alarm of class C, D, E, or F is present.</td>
</tr>
<tr>
<td>Aux. serv. postrun ID 13201</td>
<td>Postrun of the auxiliary operation is active. After the engine has stopped, auxiliary operations are enabled. These operations ensure that required equipment which is necessary for the operation of the engine continues to run (i.e. electric cooling fan).</td>
</tr>
<tr>
<td>Aux. services prerun ID 13200</td>
<td>Prerun of the auxiliary operation is active. Before the engine is started the signal "aux. services prerun" is enabled, so that all required equipment which is necessary for the operation of the engine can be initialized, started or switched.</td>
</tr>
<tr>
<td>Cool down ID 13204</td>
<td>Coasting of the engine is active. The no load operation is performed prior to the stopping of the engine. The no load operation is utilized to cool the engine.</td>
</tr>
<tr>
<td>Crank protect ID 13214</td>
<td>Starter protection. To prevent the starter from being damaged by an engine that is rotating, a crank protection delay is active to ensure that the engine has time to stop rotating.</td>
</tr>
<tr>
<td>Critical mode ID 13202</td>
<td>Critical mode (Sprinkler operation) is active. The sprinkler operation is activated. The exact description of the conditions and effects of the sprinkler operation are described in the configuration manual 37469.</td>
</tr>
<tr>
<td>Emergency run ID 13211</td>
<td>Emergency power operation [2oc]. After the control unit detects that a mains fault has occurred, the engine is started after the emergency delay timer expires. The MCB is opened, the GCB is closed, and the generator set assumes the load. If the generator set is already running, operations continue until the emergency power operation conditions no longer exist. If the mains return, the mains settling timer becomes active first (see below).</td>
</tr>
<tr>
<td>GCB dead bus close ID 13209</td>
<td>Dead bus closing of the GCB [1oc], [2oc]. The GCB is closed onto the de-energized busbar. The measured busbar voltage is below the configured dead bus detection limit.</td>
</tr>
<tr>
<td>GCB -> MCB Delay ID 13261</td>
<td>GCB – MCB delay time is active [2oc]. If the breaker logic is configured to Open Transition and a transfer from generator to mains supply is initiated, the transfer time delay will start after the replay "GCB is open" is received. The MCB close command will be issued after the transfer time has expired.</td>
</tr>
<tr>
<td>GCB open ID 13255</td>
<td>The GCB is being opened [1oc], [2oc]. A GCB open command has been issued.</td>
</tr>
<tr>
<td>Gen. stable time ID 13250</td>
<td>Generator stable time is active. If the engine monitoring delay timer has expired, the generator settling time starts. This permits for an additional delay time before the breaker is closed in order to ensure that none of the engine delayed watchdogs trips.</td>
</tr>
<tr>
<td>Idle run active ID 13216</td>
<td>The control is in idle mode. No undervoltage, underfrequency, and underspeed monitoring is performed in idle mode. The flexible limits 33 through 40 are not monitored.</td>
</tr>
<tr>
<td>Message text and ID</td>
<td>Meaning</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Ignition</td>
<td>Enable the ignition [Gas engine]</td>
</tr>
<tr>
<td>In operation</td>
<td>The genset is in regular operation</td>
</tr>
<tr>
<td>Loading Generator</td>
<td>The generator power will be increased to the set point</td>
</tr>
<tr>
<td>Mains settling</td>
<td>Mains settling time is active [2oc]</td>
</tr>
<tr>
<td>MCB dead bus close</td>
<td>Dead bus closing of the MCB [2oc]</td>
</tr>
<tr>
<td>MCB --> GCB Delay</td>
<td>MCB – GCB delay time is active [2oc]</td>
</tr>
<tr>
<td>Power limited prerun</td>
<td>Active power limited prerun is active</td>
</tr>
<tr>
<td>Preglow</td>
<td>Preglow of the engine is active [Diesel engine]</td>
</tr>
<tr>
<td>Ramp to rated</td>
<td>Engine is accelerating to rated speed</td>
</tr>
<tr>
<td>Start</td>
<td>Start engine is active</td>
</tr>
<tr>
<td>Start - Pause</td>
<td>Start pause while the engine is active</td>
</tr>
<tr>
<td>Start w/o Load</td>
<td>Start without load is active</td>
</tr>
<tr>
<td>Stop engine</td>
<td>Engine will be stopped</td>
</tr>
<tr>
<td>Synchronization GCB</td>
<td>The GCB will be synchronized</td>
</tr>
<tr>
<td>Synchronization MCB</td>
<td>The MCB will be synchronized</td>
</tr>
<tr>
<td>Turning</td>
<td>Purging operation is active [Gas engine]</td>
</tr>
<tr>
<td>Unloading Generator</td>
<td>The generator power will be decreased</td>
</tr>
<tr>
<td>Unloading mains</td>
<td>The mains power will be decreased</td>
</tr>
<tr>
<td>Synch. PERMISSIVE</td>
<td>Synchronization mode PERMISSIVE</td>
</tr>
<tr>
<td>Synch. CHECK</td>
<td>Synchronization mode CHECK</td>
</tr>
<tr>
<td>Synch. OFF</td>
<td>Synchronization mode OFF</td>
</tr>
<tr>
<td>Add-on delay</td>
<td>Load dependent start/stop (LDSS) add-on delay time</td>
</tr>
<tr>
<td>Add-off delay</td>
<td>Load dependent start/stop (LDSS) add-off delay time</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>ID 13275</td>
<td>Shows the current state of LDSS in the sequencing screen. A countdown of the configured add-off delay time will be displayed.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minimum run time</th>
<th>Load dependent start/stop (LDSS) minimum run time</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID 13276</td>
<td>Shows the current state of LDSS in the sequencing screen. A countdown of the configured minimum run time will be displayed.</td>
</tr>
</tbody>
</table>
Alarm Messages

NOTE

Refer to the Configure Monitoring section of the Parameters chapter in the Configuration Manual 37469 for a detailed description of the monitoring functions, which trigger the alarm messages.

<table>
<thead>
<tr>
<th>Message text and ID</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amber warning lamp
ID 15126</td>
<td>Amber warning lamp, J1939 interface
This watchdogs monitors, whether a specific alarm bit is received from the CAN J1939 interface. This enables to configure the control in a way that a reaction is caused by this bit (e.g. warning, shutdown). No alarm can be indicated if the CAN communication fails.</td>
</tr>
<tr>
<td>Bat. overvoltage 1
ID 10007</td>
<td>Battery overvoltage, limit value 1
The battery voltage has exceeded the limit value 1 for battery overvoltage for at least the configured time and did not fall below the value of the hysteresis.</td>
</tr>
<tr>
<td>Bat. overvoltage 2
ID 10008</td>
<td>Battery overvoltage, limit value 2
The battery voltage has exceeded the limit value 2 for battery overvoltage for at least the configured time and did not fall below the value of the hysteresis.</td>
</tr>
<tr>
<td>Bat. undervoltage 1
ID 10005</td>
<td>Battery undervoltage, limit value 1
The battery voltage has fallen below the limit value 1 for battery undervoltage for at least the configured time and has not exceeded the value of the hysteresis.</td>
</tr>
<tr>
<td>Bat. undervoltage 2
ID 10006</td>
<td>Battery undervoltage, limit value 2
The battery voltage has fallen below the limit value 2 for battery undervoltage for at least the configured time and has not exceeded the value of the hysteresis.</td>
</tr>
<tr>
<td>CAN bus overload
ID 10089</td>
<td>CAN bus overload alarm
The sum of CAN bus messages on all buses together exceeds 32 messages per 20 ms.</td>
</tr>
<tr>
<td>CAN fault J1939
ID 10017</td>
<td>Interface alarm J1939
The communication with the ECU via the CAN bus interface has been interrupted and no data can be transmitted or received over the bus within the configured time.</td>
</tr>
<tr>
<td>CANopen Interface 1
ID 10087</td>
<td>Interface alarm CANopen on CAN bus 1
No Receive Process Data Object (RPDO) is received within the configured time.</td>
</tr>
<tr>
<td>CANopen Interface 2
ID 10088</td>
<td>Interface alarm CANopen on CAN bus 2
No message is received from the external expansion board (Node ID) within the configured time.</td>
</tr>
<tr>
<td>Charge alt. low volt
ID 4056</td>
<td>Charging alternator voltage low
The charging alternator voltage has fallen below the critical limit for at least the configured time and has not exceeded the value of the hysteresis (the critical limit is 9 V for 12 V systems and 20 V for 24 V systems).</td>
</tr>
<tr>
<td>Eng. stop malfunction
ID 2504</td>
<td>Stop alarm of the engine
The engine failed to stop when given the stop command. When a stop command is issued a timer starts a countdown. If speed is still detected when this timer expires the controller recognizes an unsuccessful stop of the engine. An unsuccessful stop of the engine is determined if speed (measured by the generator frequency, the MPU, or the LogicsManager "ignition speed") is detected within the configured time after the stop signal has been issued.</td>
</tr>
<tr>
<td>EEPROM failure
ID 1714</td>
<td>The EEPROM checksum is corrupted
The EEPROM check at startup has resulted a defective EEPROM.</td>
</tr>
<tr>
<td>GCB fail to close
ID 2603</td>
<td>GCB failed to close
The easYgen has attempted to close the GCB the configured maximum number of attempts and failed. Depending on the configuration, the easYgen will continue to attempt to close the GCB as long as the conditions for closing the GCB are fulfilled.</td>
</tr>
<tr>
<td>GCB fail to open
ID 2604</td>
<td>GCB failed to open
The easYgen is still receiving the reply "GCB closed" after the GCB open monitoring timer has expired.</td>
</tr>
<tr>
<td>GCB sync. timeout
ID 3064</td>
<td>GCB synchronization time exceeded
The easYgen has failed to synchronize the GCB within the configured synchronization time.</td>
</tr>
<tr>
<td>Message text and ID</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Gen. act.pwr mismatch ID 2924</td>
<td>Generator active power mismatch The deviation between the generator power and the active power set point has exceeded the limit for at least the configured time.</td>
</tr>
<tr>
<td>Gen. PF lagging 1 ID 2237</td>
<td>Generator overexcited, limit value 1 The power factor limit 1 has been exceeded at the generator towards inductive (i.e. the current is lagging) for at least the configured time and did not fall below the value of the hysteresis.</td>
</tr>
<tr>
<td>Gen. PF lagging 2 ID 2238</td>
<td>Generator overexcited, limit value 2 The power factor limit 2 has been exceeded at the generator towards inductive (i.e. the current is lagging) for at least the configured time and did not fall below the value of the hysteresis.</td>
</tr>
<tr>
<td>Gen. PF leading 1 ID 2239</td>
<td>Generator underexcited, limit value 1 The power factor limit 1 has fallen below at the generator towards capacitive (i.e. the current is leading) for at least the configured time and did not exceed the value of the hysteresis.</td>
</tr>
<tr>
<td>Gen. PF leading 2 ID 2240</td>
<td>Generator underexcited, limit value 2 The power factor limit 2 has fallen below at the generator towards capacitive (i.e. the current is leading) for at least the configured time and did not exceed the value of the hysteresis.</td>
</tr>
<tr>
<td>Gen. overcurrent 1 ID 2218</td>
<td>Generator overcurrent, limit value 1 The generator current has exceeded the limit value 1 for generator overcurrent for at least the configured time and did not fall below the value of the hysteresis.</td>
</tr>
<tr>
<td>Gen. overcurrent 2 ID 2219</td>
<td>Generator overcurrent, limit value 2 The generator current has exceeded the limit value 2 for generator overcurrent for at least the configured time and did not fall below the value of the hysteresis.</td>
</tr>
<tr>
<td>Gen. overcurrent 3 ID 2220</td>
<td>Generator overcurrent, limit value 3 The generator current has exceeded the limit value 3 for generator overcurrent for at least the configured time and did not fall below the value of the hysteresis.</td>
</tr>
<tr>
<td>Gen. overfrequency 1 ID 2212</td>
<td>Generator overfrequency, limit value 1 The generator frequency has exceeded the limit value 1 for generator overfrequency for at least the configured time and did not fall below the value of the hysteresis.</td>
</tr>
<tr>
<td>Gen. overfrequency 2 ID 2213</td>
<td>Generator overfrequency, limit value 2 The generator frequency has exceeded the limit value 2 for generator overfrequency for at least the configured time and did not fall below the value of the hysteresis.</td>
</tr>
<tr>
<td>Gen. overload IOP 1 ID 2234</td>
<td>Generator overload IOP, limit value 1 The generator power has exceeded the limit value 1 for generator overload in isolated operation (MCB is open) for at least the configured time and did not fall below the value of the hysteresis.</td>
</tr>
<tr>
<td>Gen. overload IOP 2 ID 2235</td>
<td>Generator overload IOP, limit value 2 The generator power has exceeded the limit value 2 for generator overload in isolated operation (MCB is open) for at least the configured time and did not fall below the value of the hysteresis.</td>
</tr>
<tr>
<td>Gen. overload MOP 1 ID 2262</td>
<td>Generator overload MOP, limit value 1 The generator power has exceeded the limit value 1 for generator overload in mains parallel operation (GCB and MCB are closed) for at least the configured time and did not fall below the value of the hysteresis.</td>
</tr>
<tr>
<td>Gen. overload MOP 2 ID 2263</td>
<td>Generator overload MOP, limit value 2 The generator power has exceeded the limit value 2 for generator overload in mains parallel operation (GCB and MCB are closed) for at least the configured time and did not fall below the value of the hysteresis.</td>
</tr>
<tr>
<td>Gen. overvoltage 1 ID 2012</td>
<td>Generator overvoltage, limit value 1 The generator voltage has exceeded the limit value 1 for generator overvoltage for at least the configured time and did not fall below the value of the hysteresis.</td>
</tr>
<tr>
<td>Gen. overvoltage 2 ID 2013</td>
<td>Generator overvoltage, limit value 2 The generator voltage has exceeded the limit value 2 for generator overvoltage for at least the configured time and did not fall below the value of the hysteresis.</td>
</tr>
<tr>
<td>Gen. rev/red. pwr.1 ID 2262</td>
<td>Generator reverse power, limit value 1 / Generator reduced power, limit value 1 The generator power has exceeded the limit value 1 for generator reverse power / generator reduced power for at least the configured time and did not fall below the value of the hysteresis.</td>
</tr>
<tr>
<td>Gen. rev/red. pwr.2 ID 2263</td>
<td>Generator reverse power, limit value 2 / Generator reduced power, limit value 2 The generator power has exceeded the limit value 2 for generator reverse power / generator reduced power for at least the configured time and did not fall below the value of the hysteresis.</td>
</tr>
<tr>
<td>Gen.ph.rot. mismatch ID 3955</td>
<td>Generator rotating field mismatch The generator rotating field does not correspond with the configured direction.</td>
</tr>
<tr>
<td>Message text and ID</td>
<td>Meaning</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Gen.underfrequency 1
ID 1962</td>
<td>Generator underfrequency, limit value 1
The generator frequency has fallen below the limit value 1 for generator underfrequency for at least the configured time and has not exceeded the value of the hysteresis. Additionally, the alarm has not been acknowledged (unless the "Self acknowledgement" is configured YES).</td>
</tr>
<tr>
<td>Gen.underfrequency 2
ID 1963</td>
<td>Generator underfrequency, limit value 2
The generator frequency has fallen below the limit value 2 for generator underfrequency for at least the configured time and has not exceeded the value of the hysteresis.</td>
</tr>
<tr>
<td>Gen. undervoltage 1
ID 2062</td>
<td>Generator undervoltage, limit value 1
The generator voltage has fallen below the limit value 1 for generator undervoltage for at least the configured time and has not exceeded the value of the hysteresis.</td>
</tr>
<tr>
<td>Gen. undervoltage 2
ID 2063</td>
<td>Generator undervoltage, limit value 2
The generator voltage has fallen below the limit value 2 for generator undervoltage for at least the configured time and has not exceeded the value of the hysteresis.</td>
</tr>
<tr>
<td>Gen. volt. asymmetry
ID 3907</td>
<td>Voltage asymmetry
The generator phase-to-phase voltages have higher differences between each other than the configured limit value.</td>
</tr>
<tr>
<td>Ground fault 1
ID 3263</td>
<td>Generator ground current, limit value 1
The measured or calculated ground current has exceeded the limit value 1 for the generator ground current for at least the configured time and did not fall below the value of the hysteresis.</td>
</tr>
<tr>
<td>Ground fault 2
ID 3264</td>
<td>Generator ground current, limit value 2
The measured or calculated ground current has exceeded the limit value 2 for the generator ground current for at least the configured time and did not fall below the value of the hysteresis.</td>
</tr>
<tr>
<td>Inv. time overcurr.
ID 4038</td>
<td>Generator inverse time-overcurrent
Current monitoring with tripping time depending on the measured current. The higher the current is the faster the tripping time according to a defined curve. According to IEC 255 three different characteristics are available: normal, highly, and extremely inverse.</td>
</tr>
<tr>
<td>Mains decoupling
ID 3114</td>
<td>Mains decoupling is initiated
One or more monitoring function(s) considered for the mains decoupling functionality has triggered.</td>
</tr>
<tr>
<td>Mains export power 1
ID 3241</td>
<td>Mains export power, limit value 1
The mains export power has exceeded or fallen below the limit value 1 for mains export power for at least the configured time and did not fall below or exceed the value of the hysteresis.</td>
</tr>
<tr>
<td>Mains export power 2
ID 3242</td>
<td>Mains export power, limit value 2
The mains export power has exceeded or fallen below the limit value 2 for mains export power for at least the configured time and did not fall below or exceed the value of the hysteresis.</td>
</tr>
<tr>
<td>Mains import power 1
ID 3217</td>
<td>Mains import power, limit value 1
The mains import power has exceeded or fallen below the limit value 1 for mains import power for at least the configured time and did not fall below or exceed the value of the hysteresis.</td>
</tr>
<tr>
<td>Mains import power 2
ID 3218</td>
<td>Mains import power, limit value 2
The mains import power has exceeded or fallen below the limit value 2 for mains import power for at least the configured time and did not fall below or exceed the value of the hysteresis.</td>
</tr>
<tr>
<td>Mains overfreq. 1
ID 2862</td>
<td>Mains overfrequency, limit value 1
The mains frequency has exceeded the limit value 1 for mains overfrequency for at least the configured time and did not fall below the value of the hysteresis.</td>
</tr>
<tr>
<td>Mains overfreq. 2
ID 2863</td>
<td>Mains overfrequency, limit value 2
The mains frequency has exceeded the limit value 2 for mains overfrequency for at least the configured time and did not fall below the value of the hysteresis.</td>
</tr>
<tr>
<td>Mains overvoltage 1
ID 2962</td>
<td>Mains overvoltage, limit value 1
The mains voltage has exceeded the limit value 1 for mains overvoltage for at least the configured time and did not fall below the value of the hysteresis.</td>
</tr>
<tr>
<td>Mains overvoltage 2
ID 2963</td>
<td>Mains overvoltage, limit value 2
The mains voltage has exceeded the limit value 2 for mains overvoltage for at least the configured time and did not fall below the value of the hysteresis.</td>
</tr>
</tbody>
</table>

The easYgen failed to reduce the generator power below the configured unload limit within the configured time.
<table>
<thead>
<tr>
<th>Message text and ID</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mains PF lagging 1
ID 2985</td>
<td>Mains overexcited, limit value 1
The power factor limit 1 has been exceeded at the mains interchange point towards inductive (i.e. the current is lagging) for at least the configured time and did not fall below the value of the hysteresis.</td>
</tr>
<tr>
<td>Mains PF lagging 2
ID 2986</td>
<td>Mains overexcited, limit value 2
The power factor limit 2 has been exceeded at the mains interchange point towards inductive (i.e. the current is lagging) for at least the configured time and did not fall below the value of the hysteresis.</td>
</tr>
<tr>
<td>Mains PF leading 1
ID 3035</td>
<td>Mains underexcited, limit value 1
The power factor limit 1 has fallen below at the mains interchange point towards capacitive (i.e. the current is leading) for at least the configured time and did not exceed the value of the hysteresis.</td>
</tr>
<tr>
<td>Mains PF leading 2
ID 3036</td>
<td>Mains underexcited, limit value 2
The power factor limit 1 has fallen below at the mains interchange point towards capacitive (i.e. the current is leading) for at least the configured time and did not exceed the value of the hysteresis.</td>
</tr>
<tr>
<td>Mains phase shift
ID 3057</td>
<td>Mains phase shift
A mains phase shift, which has exceeded the configured limit, has occurred. Triggering this monitoring function causes the mains decoupling function to trigger.</td>
</tr>
<tr>
<td>Mains df/dt
ID 3106</td>
<td>Mains df/dt (ROCOF)
A mains df/dt, which has exceeded the configured limit, has occurred. Triggering this monitoring function causes the mains decoupling function to trigger.</td>
</tr>
<tr>
<td>Mains underfreq. 1
ID 2912</td>
<td>Mains underfrequency, limit value 1
The mains frequency has fallen below the limit value 1 for mains underfrequency for at least the configured time and has not exceeded the value of the hysteresis.</td>
</tr>
<tr>
<td>Mains underfreq. 2
ID 2913</td>
<td>Mains underfrequency, limit value 2
The mains frequency has fallen below the limit value 2 for mains underfrequency for at least the configured time and has not exceeded the value of the hysteresis.</td>
</tr>
<tr>
<td>Mains undervoltage 1
ID 3012</td>
<td>Mains undervoltage, limit value 1
The mains voltage has fallen below the limit value 1 for mains undervoltage for at least the configured time and has not exceeded the value of the hysteresis.</td>
</tr>
<tr>
<td>Mains undervoltage 2
ID 3013</td>
<td>Mains undervoltage, limit value 2
The mains voltage has fallen below the limit value 2 for mains undervoltage for at least the configured time and has not exceeded the value of the hysteresis.</td>
</tr>
<tr>
<td>Maint. days exceeded
ID 2560</td>
<td>Maintenance days exceeded
The generator run time has exceeded the configured number of days since the last maintenance period. Additionally, the alarm has not been acknowledged.</td>
</tr>
<tr>
<td>Maint. hrs exceeded
ID 2561</td>
<td>Maintenance hours exceeded
The generator run time has exceeded the configured number of operating hours since the last maintenance period. Additionally, the alarm has not been acknowledged.</td>
</tr>
<tr>
<td>MCB fail to close
ID 2623</td>
<td>MCB failed to close
The easYgen has attempted to close the MCB the configured maximum number of attempts and failed. Depending on the configuration, the easYgen will continue to attempt to close the GCB as long as the conditions for closing the MCB are fulfilled.</td>
</tr>
<tr>
<td>MCB fail to open
ID 2624</td>
<td>Failed MCB open
The easYgen is still receiving the reply MCB closed” after the MCB open monitoring timer has expired.</td>
</tr>
<tr>
<td>MCB syn. timeout
ID 3074</td>
<td>MCB synchronization time exceeded
The easYgen has failed to synchronize the MCB within the configured synchronization time.</td>
</tr>
<tr>
<td>Missing members
ID 4064</td>
<td>Missing load share members detected
The easYgen has detected that the number of available units for load sharing does not correspond with the configured number of members.</td>
</tr>
<tr>
<td>Mns act. pwr mismatch
ID 2934</td>
<td>Mains active power mismatch
The deviation between the import/export power and the active import/export power set point has exceeded the limit for at least the configured time.</td>
</tr>
<tr>
<td>Mns ph. rot. mismatch
ID 3975</td>
<td>Mains rotating field mismatch
The mains rotating field does not correspond with the configured direction.</td>
</tr>
<tr>
<td>Operat. range failed
ID 2664</td>
<td>Measured values not within operating range
An alarm will be issued if ignition speed is exceeded and the measured values for generator and/or mains are not within the configured operating range. No alarm will be issued in idle mode. The exact tripping conditions for this monitoring functions are described in the configuration manual 37469 in the section "Configure Monitoring: Engine, Operating Range Failure".</td>
</tr>
<tr>
<td>Overspeed 1
ID 2112</td>
<td>Engine overspeed, limit value 1
The engine speed has exceeded the limit value 1 for engine overspeed for at least the configured time and did not fall below the value of the hysteresis.</td>
</tr>
<tr>
<td>Overspeed 2
ID 2113</td>
<td>Engine overspeed, limit value 2
The engine speed has exceeded the limit value 2 for engine overspeed for at least the configured time and did not fall below the value of the hysteresis.</td>
</tr>
<tr>
<td>Message text and ID</td>
<td>Meaning</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Parameter alignment
ID 4073</td>
<td>LDSS parameter mismatch detected
The easYgen has detected that not all LDSS parameters are configured identically at all participating units. Refer to the "Multi-unit configuration check" section in the "Parameters" chapter of the Configuration Manual 37469 for a list of all monitored parameters.</td>
</tr>
<tr>
<td>Ph. rotation mismatch
ID 2944</td>
<td>Generator/busbar/mains phase rotation different
Generator, busbar (easYgen-3400/3500 only), and mains have different rotating fields. A CB closure is blocked.
The phase rotation monitoring is always enabled and cannot be disabled.</td>
</tr>
<tr>
<td>Red stop lamp
ID 15125</td>
<td>Red stop lamp, J1939 interface
This watchdog monitors, whether a specific alarm bit is received from the CAN J1939 interface. This enables to configure the control in a way that a reaction is caused by this bit (e.g. warning, shutdown). No alarm can be indicated if the CAN communication fails.</td>
</tr>
<tr>
<td>Speed/freq. mismatch
ID 2457</td>
<td>Difference in frequency/speed measurement alarm
The speed differential between the generator frequency (ascertained by the generator voltage measurement) and the engine speed (measured by the MPU) has exceeded the configured limit value / differential frequency for at least the configured time and has not fallen below the value of the hysteresis. The alarm may also be triggered if the LogicsManager "ignition speed" is enabled and no electrical frequency is detected as well as the other way round.</td>
</tr>
<tr>
<td>Start fail
ID 3325</td>
<td>Failure of engine to start alarm
The generator set has failed to start after the configured number of attempts. Depending on the configuration, no more start attempt will be carried out until the alarm is acknowledged.</td>
</tr>
<tr>
<td>Unbalanced load 1
ID 2412</td>
<td>Generator unbalanced load, limit value 1
The generator current has exceeded the limit value 1 for generator unbalanced load for at least the configured time and did not fall below the value of the hysteresis.</td>
</tr>
<tr>
<td>Unbalanced load 2
ID 2413</td>
<td>Generator unbalanced load, limit value 2
The generator current has exceeded the limit value 2 for generator unbalanced load for at least the configured time and did not fall below the value of the hysteresis.</td>
</tr>
<tr>
<td>Underspeed 1
ID 2162</td>
<td>Engine underspeed, limit value 1
The engine speed has fallen below the limit value 1 for engine underspeed and has not exceeded the value of the hysteresis.</td>
</tr>
<tr>
<td>Underspeed 2
ID 2163</td>
<td>Engine underspeed, limit value 2
The engine speed has fallen below the limit value 2 for engine underspeed and has not exceeded the value of the hysteresis.</td>
</tr>
<tr>
<td>Unintended stop
ID 2652</td>
<td>Unintended Stop
The easYgen expects the generator to be running but a sudden underrun of the ignition speed has been detected.</td>
</tr>
<tr>
<td>Wb:
 Analog input x--->
 refer to: Table 5-1 and Table 5-2 on page 58</td>
<td>Analog input {x}, wire break
During measurement of the analog input a wire break was detected. This text may be assigned customer defined. The text in angular brackets is the default text.</td>
</tr>
<tr>
<td>

 Discrete input x--->
 refer to: Table 5-3 on page 58</td>
<td>Discrete input {x}, energized / de-energized
The actual state of the monitored discrete input is energized / de-energized (depending on the configuration) for at least the configured time. This text may be assigned customer defined. The text in angular brackets is the default text.</td>
</tr>
<tr>
<td>

 Ext. Discrete input x--->
 refer to: Table 5-4 on page 58</td>
<td>External discrete input {x}, energized / de-energized
The actual state of the monitored external discrete input is energized / de-energized (depending on the configuration) for at least the configured time. This text may be assigned customer defined. The text in angular brackets is the default text.</td>
</tr>
<tr>
<td>

 Flexible limit x--->
 refer to: Table 5-4 on page 58</td>
<td>Flexible threshold {x}, overrun / underrun
The actual value of the monitored analog value has exceeded / fallen below the threshold (depending on the configuration) for at least the configured time and did not fall below / exceed the value of the hysteresis. This text may be assigned customer defined. The text in angular brackets is the default text.</td>
</tr>
</tbody>
</table>
Table 5-1: Message IDs for analog inputs

<table>
<thead>
<tr>
<th>Analog input #</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message ID</td>
<td>10014</td>
<td>10015</td>
<td>10060</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5-2: Message IDs for external analog inputs

<table>
<thead>
<tr>
<th>External analog input #</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message ID</td>
<td>10221</td>
<td>10222</td>
<td>10223</td>
<td>10224</td>
<td>10225</td>
<td>10226</td>
<td>10227</td>
<td>10228</td>
</tr>
</tbody>
</table>

Table 5-3: Message IDs for discrete inputs

<table>
<thead>
<tr>
<th>Discrete input #</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message ID</td>
<td>10600</td>
<td>10601</td>
<td>10602</td>
<td>10603</td>
<td>10604</td>
<td>10605</td>
<td>10606</td>
<td>10607</td>
<td>10608</td>
<td>10609</td>
<td>10610</td>
<td>10611</td>
</tr>
</tbody>
</table>

Table 5-4: Message IDs for external discrete inputs

<table>
<thead>
<tr>
<th>External discrete input #</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message ID</td>
<td>16360</td>
<td>16361</td>
<td>16362</td>
<td>16364</td>
<td>16365</td>
<td>16366</td>
<td>16367</td>
<td>16368</td>
<td>16369</td>
<td>16370</td>
<td>16371</td>
<td>16372</td>
<td>16373</td>
<td>16374</td>
<td>16375</td>
<td>16376</td>
</tr>
</tbody>
</table>

Table 5-5: Message IDs for flexible limits

<table>
<thead>
<tr>
<th>Flexible limit #</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message ID</td>
<td>10018</td>
<td>10019</td>
<td>10020</td>
<td>10021</td>
<td>10022</td>
<td>10023</td>
<td>10024</td>
<td>10025</td>
<td>10026</td>
<td>10027</td>
</tr>
<tr>
<td>Flexible limit #</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>Message ID</td>
<td>10028</td>
<td>10029</td>
<td>10030</td>
<td>10031</td>
<td>10032</td>
<td>10033</td>
<td>10034</td>
<td>10035</td>
<td>10036</td>
<td>10037</td>
</tr>
<tr>
<td>Flexible limit #</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>Message ID</td>
<td>10038</td>
<td>10039</td>
<td>10040</td>
<td>10041</td>
<td>10042</td>
<td>10043</td>
<td>10044</td>
<td>10045</td>
<td>10046</td>
<td>10047</td>
</tr>
<tr>
<td>Flexible limit #</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>Message ID</td>
<td>10048</td>
<td>10049</td>
<td>10050</td>
<td>10051</td>
<td>10052</td>
<td>10053</td>
<td>10054</td>
<td>10055</td>
<td>10056</td>
<td>10057</td>
</tr>
</tbody>
</table>
Appendix B.
Restoring a Language Setting

Due to the multilingual capability of the unit, it may happen that the display language of the easYgen-3200 is set to a language, the operator is unable to read or understand, by mistake. In this case, the following proceeding helps to restore the desired language. The default setting is English.

Figure 5-2 refers to the different softkeys, which appear in the configured language. In order to change the language setting, press the softkeys in the following order:

1. Press softkey 5 until you return to the starting screen (as indicated above)
2. Press softkey 6 once to access the "Parameter" screen
3. Press softkey 1 once to access the "Configure language / clock" screen
4. Press softkey 5 once to edit the language setting
5. Press softkeys 10 or 11 to select the desired language
6. Press softkey 8 once to commit the language setting

Now, the display language is restored to the desired language again.